TY - JOUR
T1 - Preparation of poly(ethylene glycol) hydrogels with different network structures for the application of enzyme immobilization
AU - Choi, Dongkil
AU - Lee, Woojin
AU - Park, Jinwon
AU - Koh, Wongun
PY - 2008
Y1 - 2008
N2 - In this study, poly(ethylene glycol) (PEG)-based hydrogels having different network structures were synthesized by UV-initiated photopolymerization and used for the enzyme immobilization. PEGs with different molecular weight were acrylated by derivatizing both ends with acryloyl chloride and photopolymerization of PEG-diacrylate (PEG-DA) yielded crosslinked hydrogel network within 5 seconds. Attachment of acrylate groups and gelation were confirmed by ATR/FT-IR and FT-Raman spectroscopy. Network structures of hydrogels could be easily controlled by changing the molecular weight (MW) of PEG-DA and characterized by calculating molecular weight between crosslinks and mesh size from the swelling measurement. Synthesis of hydrogels with higher MW of PEG produced less crosslinked hydrogels having higher water content, larger value of Mc and mesh size, which resulted in enhanced mass transfer but loss of mechanical properties. For the enzyme immobilization, glucose oxidase (GOX) was immobilized inside PEG hydrogels by means of physical entrapment and covalent immobilization. Encapsulated GOX were covalently bound to PEG backbone using acryloyl-PEG-N-hydroxysuccinimide and maintained their activity over a week period without leakage. Kinetic study indicated that immobilized enzyme inside hydrogel prepared from higher MW of PEG possessed lower apparent Km (Michaelis-Menten constant) and higher activity.
AB - In this study, poly(ethylene glycol) (PEG)-based hydrogels having different network structures were synthesized by UV-initiated photopolymerization and used for the enzyme immobilization. PEGs with different molecular weight were acrylated by derivatizing both ends with acryloyl chloride and photopolymerization of PEG-diacrylate (PEG-DA) yielded crosslinked hydrogel network within 5 seconds. Attachment of acrylate groups and gelation were confirmed by ATR/FT-IR and FT-Raman spectroscopy. Network structures of hydrogels could be easily controlled by changing the molecular weight (MW) of PEG-DA and characterized by calculating molecular weight between crosslinks and mesh size from the swelling measurement. Synthesis of hydrogels with higher MW of PEG produced less crosslinked hydrogels having higher water content, larger value of Mc and mesh size, which resulted in enhanced mass transfer but loss of mechanical properties. For the enzyme immobilization, glucose oxidase (GOX) was immobilized inside PEG hydrogels by means of physical entrapment and covalent immobilization. Encapsulated GOX were covalently bound to PEG backbone using acryloyl-PEG-N-hydroxysuccinimide and maintained their activity over a week period without leakage. Kinetic study indicated that immobilized enzyme inside hydrogel prepared from higher MW of PEG possessed lower apparent Km (Michaelis-Menten constant) and higher activity.
UR - http://www.scopus.com/inward/record.url?scp=64849084791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64849084791&partnerID=8YFLogxK
U2 - 10.3233/BME-2008-0551
DO - 10.3233/BME-2008-0551
M3 - Article
C2 - 19197111
AN - SCOPUS:64849084791
SN - 0959-2989
VL - 18
SP - 345
EP - 356
JO - Bio-Medical Materials and Engineering
JF - Bio-Medical Materials and Engineering
IS - 6
ER -