Abstract
This study aims to develop Artificial Neural Network (ANN) models to examine the thermal performance of double skin-enveloped buildings under different opening conditions. Performance tests of the ANN models, which were developed for integrated temperature control logics, were conducted for a space with a double skin envelope in a one-storey building during the winter. ANN models were embedded in the logic for predictive and adaptive controls in order to ensure comfortable, energy-efficient indoor temperature conditions. Four ANN models were developed to predict future indoor temperatures under different opening conditions of the internal and external envelopes. Their performances were preliminarily tested by comparing them with conventional non-ANN-based methods in terms of thermal control and energy efficiency. The comparative analysis revealed that the ANN models were properly organized to predict future indoor temperature conditions. Based on the prediction accuracy, the optimal opening conditions and heating system operations could be determined to guarantee advanced methods for effective thermal control and energy efficiency. Thus, ANN models are expected to be applied to the temperature control logic for double skin-enveloped buildings in order to improve their thermal control performance and energy efficiency.
Original language | English |
---|---|
Pages (from-to) | 301-311 |
Number of pages | 11 |
Journal | Energy and Buildings |
Volume | 75 |
DOIs | |
Publication status | Published - 2014 Jun |
Bibliographical note
Funding Information:This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number: 2012R1A1A1005272 ), and by the research fund of Hanbat National University in 2012.
All Science Journal Classification (ASJC) codes
- Civil and Structural Engineering
- Building and Construction
- Mechanical Engineering
- Electrical and Electronic Engineering