TY - JOUR
T1 - Precision and trueness of dental models manufactured with different 3-dimensional printing techniques
AU - Kim, Soo Yeon
AU - Shin, Yoo Seok
AU - Jung, Hwi Dong
AU - Hwang, Chung Ju
AU - Baik, Hyoung Seon
AU - Cha, Jung Yul
N1 - Publisher Copyright:
© 2017 American Association of Orthodontists
PY - 2018/1
Y1 - 2018/1
N2 - Introduction In this study, we assessed the precision and trueness of dental models printed with 3-dimensional (3D) printers via different printing techniques. Methods Digital reference models were printed 5 times using stereolithography apparatus (SLA), digital light processing (DLP), fused filament fabrication (FFF), and the PolyJet technique. The 3D printed models were scanned and evaluated for tooth, arch, and occlusion measurements. Precision and trueness were analyzed with root mean squares (RMS) for the differences in each measurement. Differences in measurement variables among the 3D printing techniques were analyzed by 1-way analysis of variance (α = 0.05). Results Except in trueness of occlusion measurements, there were significant differences in all measurements among the 4 techniques (P <0.001). For overall tooth measurements, the DLP (76 ± 14 μm) and PolyJet (68 ± 9 μm) techniques exhibited significantly different mean RMS values of precision than the SLA (88 ± 14 μm) and FFF (99 ± 14 μm) techniques (P <0.05). For overall arch measurements, the SLA (176 ± 73 μm) had significantly different RMS values than the DLP (74 ± 34 μm), FFF (89 ± 34 μm), and PolyJet (69 ± 18 μm) techniques (P <0.05). For overall occlusion measurements, the FFF (170 ± 55 μm) exhibited significantly different RMS values than the SLA (94 ± 33 μm), DLP (120 ± 28 μm), and PolyJet (96 ± 33 μm) techniques (P <0.05). There were significant differences in mean RMS values of trueness of overall tooth measurements among all 4 techniques: SLA (107 ± 11 μm), DLP (143 ± 8 μm), FFF (188 ± 14 μm), and PolyJet (78 ± 9 μm) (P <0.05). For overall arch measurements, the SLA (141 ± 35 μm) and PolyJet (86 ± 17 μm) techniques exhibited significantly different mean RMS values of trueness than DLP (469 ± 49 μm) and FFF (409 ± 36 μm) (P <0.05). Conclusions The 3D printing techniques showed significant differences in precision of all measurements and in trueness of tooth and arch measurements. The PolyJet and DLP techniques were more precise than the FFF and SLA techniques, with the PolyJet technique having the highest accuracy.
AB - Introduction In this study, we assessed the precision and trueness of dental models printed with 3-dimensional (3D) printers via different printing techniques. Methods Digital reference models were printed 5 times using stereolithography apparatus (SLA), digital light processing (DLP), fused filament fabrication (FFF), and the PolyJet technique. The 3D printed models were scanned and evaluated for tooth, arch, and occlusion measurements. Precision and trueness were analyzed with root mean squares (RMS) for the differences in each measurement. Differences in measurement variables among the 3D printing techniques were analyzed by 1-way analysis of variance (α = 0.05). Results Except in trueness of occlusion measurements, there were significant differences in all measurements among the 4 techniques (P <0.001). For overall tooth measurements, the DLP (76 ± 14 μm) and PolyJet (68 ± 9 μm) techniques exhibited significantly different mean RMS values of precision than the SLA (88 ± 14 μm) and FFF (99 ± 14 μm) techniques (P <0.05). For overall arch measurements, the SLA (176 ± 73 μm) had significantly different RMS values than the DLP (74 ± 34 μm), FFF (89 ± 34 μm), and PolyJet (69 ± 18 μm) techniques (P <0.05). For overall occlusion measurements, the FFF (170 ± 55 μm) exhibited significantly different RMS values than the SLA (94 ± 33 μm), DLP (120 ± 28 μm), and PolyJet (96 ± 33 μm) techniques (P <0.05). There were significant differences in mean RMS values of trueness of overall tooth measurements among all 4 techniques: SLA (107 ± 11 μm), DLP (143 ± 8 μm), FFF (188 ± 14 μm), and PolyJet (78 ± 9 μm) (P <0.05). For overall arch measurements, the SLA (141 ± 35 μm) and PolyJet (86 ± 17 μm) techniques exhibited significantly different mean RMS values of trueness than DLP (469 ± 49 μm) and FFF (409 ± 36 μm) (P <0.05). Conclusions The 3D printing techniques showed significant differences in precision of all measurements and in trueness of tooth and arch measurements. The PolyJet and DLP techniques were more precise than the FFF and SLA techniques, with the PolyJet technique having the highest accuracy.
UR - http://www.scopus.com/inward/record.url?scp=85039151375&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85039151375&partnerID=8YFLogxK
U2 - 10.1016/j.ajodo.2017.05.025
DO - 10.1016/j.ajodo.2017.05.025
M3 - Article
C2 - 29287640
AN - SCOPUS:85039151375
SN - 0889-5406
VL - 153
SP - 144
EP - 153
JO - American Journal of Orthodontics and Dentofacial Orthopedics
JF - American Journal of Orthodontics and Dentofacial Orthopedics
IS - 1
ER -