Precise Mass Determination of SPT-CL J2106-5844, the Most Massive Cluster at z > 1

Jinhyub Kim, M. James Jee, Saul Perlmutter, Brian Hayden, David Rubin, Xiaosheng Huang, Greg Aldering, Jongwan Ko

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

We present a detailed high-resolution weak-lensing study of SPT-CL J2106-5844 at z = 1.132, claimed to be the most massive system discovered at z > 1 in the South Pole Telescope Sunyaev-Zel'dovich survey. Based on the deep imaging data from the Advanced Camera for Surveys and Wide Field Camera 3 on board the Hubble Space Telescope, we find that the cluster mass distribution is asymmetric, composed of a main clump and a subclump ∼640 kpc west thereof. The central clump is further resolved into two smaller northwestern and southeastern substructures separated by ∼150 kpc. We show that this rather complex mass distribution is more consistent with the cluster galaxy distribution than a unimodal distribution as previously presented. The northwestern substructure coincides with the brightest cluster galaxy and the X-ray peak while the southeastern one agrees with the location of the peak in number density. These morphological features and the comparison with the X-ray emission suggest that the cluster might be a merging system. We estimate the virial mass of the cluster to be M200c =(10.4-3.0 +3.3 ± 1.0) × 1014 M, where the second error bar is the systematic uncertainty. Our result confirms that the cluster SPT-CL J2106-5844 is indeed the most massive cluster at z > 1 known to date. We demonstrate the robustness of this mass estimate by performing a number of tests with different assumptions on the centroids, mass-concentration relations, and sample variance.

Original languageEnglish
Article number76
JournalAstrophysical Journal
Volume887
Issue number1
DOIs
Publication statusPublished - 2019 Dec 10

Bibliographical note

Publisher Copyright:
© 2019. The American Astronomical Society. All rights reserved..

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Precise Mass Determination of SPT-CL J2106-5844, the Most Massive Cluster at z > 1'. Together they form a unique fingerprint.

Cite this