Abstract
A number of super-resolution (SR) algorithms from interpolation to deep neural networks (DNN) have emerged to restore or create missing details of the input low-resolution image. As mobile devices and display hardware develops, the demand for practical SR technology has increased. Current state-of-the-art SR methods are based on DNNs for better quality. However, they are feasible when executed by using a parallel computing module (e.g. GPUs), and have been difficult to apply to general uses such as end-user software, smartphones, and televisions. To this end, we propose an efficient and practical approach for the SR by adopting look-up table (LUT). We train a deep SR network with a small receptive field and transfer the output values of the learned deep model to the LUT. At test time, we retrieve the precomputed HR output values from the LUT for query LR input pixels. The proposed method can be performed very quickly because it does not require a large number of floating point operations. Experimental results show the efficiency and the effectiveness of our method. Especially, our method runs faster while showing better quality compared to bicubic interpolation.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
Publisher | IEEE Computer Society |
Pages | 691-700 |
Number of pages | 10 |
ISBN (Electronic) | 9781665445092 |
DOIs | |
Publication status | Published - 2021 |
Event | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States Duration: 2021 Jun 19 → 2021 Jun 25 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 21/6/19 → 21/6/25 |
Bibliographical note
Funding Information:Acknowledgement This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2014-3-00123, Development of High Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis, and No. 2020-0-01361, Artificial Intelligence Graduate School Program (Yonsei University)).
Publisher Copyright:
© 2021 IEEE
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition