Abstract
PURPOSE. We investigated a role of bone morphogenic protein 7 (BMP7), a member of the TGF-β superfamily on pathogenic mechanism of Graves’ orbitopathy (GO). The therapeutic effects of BMP7 on inflammation and fibrosis were evaluated in cultured Graves’ orbital fibroblasts. METHODS. Expression of BMP7 was compared in cultured orbital tissue explants from GO (n = 12) and normal control (n = 12) subjects using real-time PCR. Orbital fibroblasts were cultured from orbital connective tissues obtained from GO (n = 3) and normal control patients (n = 3). Cells were pretreated with recombinant human BMP7 (rhBMP7) before stimulation with TGF-β, IL-1β, and TNF-α. Fibrosis-related proteins and inflammatory cytokines were analyzed by Western blotting. The activation of signaling molecules in inflammation and fibrosis was also analyzed. RESULTS. The expressions of BMP7 mRNA were lower in GO orbital tissues than control. Fibrosis-related proteins, fibronectin, collagen 1α, and α-SMA induced by TGF-β were suppressed by treating rhBMP7, and rhBMP7 upregulated TGF-β induced SMAD1/5/8 protein expression, whereas downregulated SMAD2/3. Increased pro-inflammatory molecules, IL-6, IL-8, and intercellular adhesion molecule-1 (ICAM-1) by IL-1β or TNF-α were blocked by rhBMP7 treatment, and the expression of phosphorylated NFκB and Akt was suppressed by rhBMP7 treatment. CONCLUSIONS. BMP7 transcript levels were downregulated in Graves’ orbital tissues. Exogenous BMP7 treatment showed inhibitory effects on the production of profibrotic proteins and proinflammatory cytokines in orbital fibroblasts. Our results provide a molecular basis of BMP7 as a new potential therapeutic agent through the opposing mechanism of profibrotic TGF-β/SMAD signaling and proinflammatory cytokine production.
Original language | English |
---|---|
Article number | 7 |
Journal | Investigative Ophthalmology and Visual Science |
Volume | 63 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2022 Jun |
Bibliographical note
Funding Information:Supported by a faculty research grant of Yonsei University College of Medicine (6-2020-0093) and by the Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (grant number NRF-2021R1F1A1046652).
Publisher Copyright:
Copyright 2022 The Authors
All Science Journal Classification (ASJC) codes
- Ophthalmology
- Sensory Systems
- Cellular and Molecular Neuroscience