Abstract
Temperature-dependent microstructural evolution of hexagonal WO3 (h-WO3) polytypes is explored via ab initio molecular dynamics calculations within the density-functional theory framework. We present simulated finite temperature radial distribution function and X-ray diffraction patterns to reinterpret recent experimental pair distribution function analysis. This work clearly demonstrates that after a more careful analysis of the finite temperature structural properties of h-WO3, an intermediate H1-like structure is predicted at higher temperatures, while the more stable H4 polytype (and not the experimentally suggested H2 polytype) is obtained nearer ambient temperatures. This is further corroborated by our electronic structure analysis which shows that the electronic band gap energy of the ambient temperature H4-like structure agrees much better with the experimentally reported band gap energies.
Original language | English |
---|---|
Pages (from-to) | 21644-21650 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry C |
Volume | 122 |
Issue number | 37 |
DOIs | |
Publication status | Published - 2018 Sept 20 |
Bibliographical note
Publisher Copyright:© 2018 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films