Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications

Sumi Yang, Lindyk Jang, Semin Kim, Jongcheol Yang, Kisuk Yang, Seung Woo Cho, Jae Young Lee

Research output: Contribution to journalArticlepeer-review

111 Citations (Scopus)

Abstract

Electrically conductive biomaterials that can efficiently deliver electrical signals to cells or improve electrical communication among cells have received considerable attention for potential tissue engineering applications. Conductive hydrogels are desirable particularly for neural applications, as they can provide electrical signals and soft microenvironments that can mimic native nerve tissues. In this study, conductive and soft polypyrrole/alginate (PPy/Alg) hydrogels are developed by chemically polymerizing PPy within ionically cross-linked alginate hydrogel networks. The synthesized hydrogels exhibit a Young's modulus of 20–200 kPa. Electrical conductance of the PPy/Alg hydrogels could be enhanced by more than one order of magnitude compared to that of pristine alginate hydrogels. In vitro studies with human bone marrow-derived mesenchymal stem cells (hMSCs) reveal that cell adhesion and growth are promoted on the PPy/Alg hydrogels. Additionally, the PPy/Alg hydrogels support and greatly enhance the expression of neural differentiation markers (i.e., Tuj1 and MAP2) of hMSCs compared to tissue culture plate controls. Subcutaneous implantation of the hydrogels for eight weeks induces mild inflammatory reactions. These soft and conductive hydrogels will serve as a useful platform to study the effects of electrical and mechanical signals on stem cells and/or neural cells and to develop multifunctional neural tissue engineering scaffolds. (Figure presented.).

Original languageEnglish
Pages (from-to)1653-1661
Number of pages9
JournalMacromolecular Bioscience
Volume16
Issue number11
DOIs
Publication statusPublished - 2016 Nov 1

Bibliographical note

Funding Information:
This research was supported by the Global Research Lab Program (2013-050616), Basic Science Research Program (2013R1A1A1012179), and Pioneer Research Center Program (NRF-2014M3C1A3001208) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning. Also, this research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare (HI14C3484), Republic of Korea. This work was also supported by the “GRI(GIST Research Institute)” Project through a grant provided by GIST in 2016.

Publisher Copyright:
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications'. Together they form a unique fingerprint.

Cite this