Poly(ethylene glycol) corona chain length controls end-group-dependent cell interactions of dendron micelles

Hao Jui Hsu, Soumyo Sen, Ryan M. Pearson, Sayam Uddin, Petr Král, Seungpyo Hong

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

To systematically investigate the relationship among surface charge, PEG chain length, and nano-bio interactions of dendron-based micelles (DMs), a series of PEGylated DMs with various end groups (-NH2, -Ac, and -COOH) and PEG chain lengths (600 and 2000 g/mol) are prepared and tested in vitro. The DMs with longer PEG chains (DM2K) do not interact with cells despite their positively charged surfaces. In sharp contrast, the DMs with shorter PEG chains (DM600) exhibit charge-dependent cellular interactions, as observed in both in vitro and molecular dynamics (MD) simulation results. Furthermore, all DMs with different charges display enhanced stability for hydrophobic dye encapsulation compared to conventional linear-block copolymer-based micelles, by allowing only a minimal leakage of the dye in vitro. Our results demonstrate the critical roles of the PEG chain length and polymeric architecture on the terminal charge effect and the stability of micelles, which provides an important design cue for polymeric micelles.

Original languageEnglish
Pages (from-to)6911-6918
Number of pages8
JournalMacromolecules
Volume47
Issue number19
DOIs
Publication statusPublished - 2014 Oct 14

Bibliographical note

Publisher Copyright:
© 2014 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Organic Chemistry
  • Polymers and Plastics
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Poly(ethylene glycol) corona chain length controls end-group-dependent cell interactions of dendron micelles'. Together they form a unique fingerprint.

Cite this