Abstract
We investigate the polarization modulation effect of a single-crystalline BeO layer on AlGaN/GaN high-electron-mobility transistors (HEMTs). The BeO layer with macroscopic polarization on top of the AlGaN barrier layer increases the 2-dimensional electron gas density in the triangular quantum well (QW) at the interface of the AlGaN/GaN heterostructure. Electronic band bending of BeO and a deeper triangular QW observed from the simulated conduction band profile indicate that the BeO layer can modify the polarization field at the AlGaN/GaN interface. A ∼20-nm-thick single-crystalline BeO thin film is grown on AlGaN/GaN HEMTs by atomic-layer deposition. Room-temperature and variable-temperature Hall-effect measurements confirm that the HEMT with BeO forms a channel with a 14% increase of the sheet carrier concentration as compared with a conventional HEMT. An improved output performance is also observed in the I-V characteristics which confirms the polarization modulation effect of the BeO layer.
Original language | English |
---|---|
Article number | 103502 |
Journal | Applied Physics Letters |
Volume | 115 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2019 Sept 2 |
Bibliographical note
Publisher Copyright:© 2019 Author(s).
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)