Abstract
Conjugatable nanobimetals exhibiting broadband light absorption for use as phototherapeutic platforms were assembled via a plug-and-play continuous gas flow route. Electrically produced AuCu nanobunches (NBs) under nitrogen gas flow were directly injected into cysteine (cys) solution through gas pressurization to mechanically spray the solution (AuCu into cys droplets). The sprayed droplets were then exposed to 185 nm UV light (higher photon energy [6.2 eV] than the work functions of Au [5.1 eV] and Cu [4.7 eV]) to initiate photoionization of AuCu NBs for subsequent electrostatic reaction with the SH- group of cys to form cys-inserted AuCu (AuCu-cys) platforms in a single-pass gas stream. These platforms exhibited broadband light absorption spectra because of hybridized interparticle plasmonic coupling and could be conjugated to folic acid (FA) when dispersed in FA solution to form highly dispersible, biocompatible, and cancer-targetable AuCu-cys-FA. This material was suitable for use in targeted phototherapy of folate-receptor (FR)-rich cancers via FR-mediated endocytosis, and loading doxorubicin (DOX) into AuCu-cys-FA (i.e., AuCu-cys-DOXFA) facilitated chemo-phototherapy because of photoresponsive anticancer drug release upon induction of hyperthermia.
Original language | English |
---|---|
Pages (from-to) | 17193-17203 |
Number of pages | 11 |
Journal | ACS Applied Materials and Interfaces |
Volume | 11 |
Issue number | 19 |
DOIs | |
Publication status | Published - 2019 May 15 |
Bibliographical note
Publisher Copyright:© 2019 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Materials Science(all)