Abstract
Phospholipase D (PLD) isoforms PLD1 and PLD2 serve as the primary nodes where diverse signaling pathways converge. However, their isoform-specific functions remain unclear. We showed that PLD1 and PLD2 selectively couple to toll-like receptor 4 (TLR4) and interleukin 4 receptor (IL-4R) and differentially regulate macrophage polarization of M1 and M2 via the LPS–MyD88 axis and the IL-4–JAK3 signaling, respectively. Lipopolysaccharide (LPS) enhanced TLR4 or MyD88 interaction with PLD1; IL-4 induced IL-4R or JAK3 association with PLD2, indicating isozyme-specific signaling events. PLD1 and PLD2 are indispensable for M1 polarization and M2 polarization, respectively. Genetic and pharmacological targeting of PLD1 conferred protection against LPS-induced sepsis, cardiotoxin-induced muscle injury, and skin injury by promoting the shift toward M2; PLD2 ablation intensified disease severity by promoting the shift toward M1. Enhanced Foxp3+ regulatory T cell recruitment also influenced the anti-inflammatory phenotype of Pld1LyzCre macrophages. We reveal a previously uncharacterized role of PLD isoforms in macrophage polarization, signifying potential pharmacological interventions for macrophage modulation.
Original language | English |
---|---|
Pages (from-to) | 5193-5211 |
Number of pages | 19 |
Journal | Journal of Cellular Physiology |
Volume | 236 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2021 Jul |
Bibliographical note
Funding Information:The present study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF‐2018R1A2B3002179) and by the Yonsei University Research Fund of 2019‐22‐0193.
Publisher Copyright:
© 2020 The Authors. Journal of Cellular Physiology published by Wiley Periodicals LLC
All Science Journal Classification (ASJC) codes
- Physiology
- Clinical Biochemistry
- Cell Biology