Abstract
Naturally available tubular Halloysite nanoclay is modified with platinum for the fabrication of autonomous self-moving nanojets. The nanojets exhibit great performance in the removal of heavy metal ions in aqueous solutions. The heavy metal ions get readily adsorbed onto the large surface area available on the Halloysite nanoclay. The fabricated nanojets are observed to have a greater efficiency with sensing of larger sized metal ions (Hg2+ and Pb2+) as compared to smaller sized ions (Zn2+ and Cd2+), and especially sensitive toward the “detection” of mercury ions. The proposed system displays a wide detection range (0.25–1000 ppb). Moreover, the system displays high sensitivity with low limit of detection (3.24 ppb) achieved, which falls in the permissible range for mercury in drinking water (2–5.5 ppb) as set by the World Health Organisation. The self-moving nanojets serve as mobile nanosensors for the simultaneous detection and removal of heavy metals in aqueous samples.
Original language | English |
---|---|
Article number | 1800502 |
Journal | Advanced Materials Technologies |
Volume | 4 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2019 Feb 1 |
Bibliographical note
Funding Information:This work was supported by A*STAR grant (No. SERC A1783c0005), Singapore. Authors acknowledge the financial support of the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/ 0000444 financed by the EFRR). This article is part of the special series on Advanced Intelligent Systems that showcases the outstanding achievements of leading international researchers on intelligent systems.
Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Mechanics of Materials
- Industrial and Manufacturing Engineering