Abstract
In this presentation, we explore the feasibility of plasmonic nanohole-based sub-diffraction-limited nanoscopy for biomolecular imaging. The technique utilizes near-field distribution localized by surface plasmon localization on metallic nanoholes which is used to sample molecular fluorescence. The optimum geometry of nanohole arrays was determined by numerical analysis. The localization sampling was applied to reconstructing sub-diffraction-limited images of gliding microtubules with a 76 nm effective resolution in the lateral direction. Extraordinary light transmission was also employed to address enhancement of axial resolution using nanohole arrays, based on which extraction of gliding motions of bacteria was demonstrated with an axial resolution down to 50 nm.
Original language | English |
---|---|
Title of host publication | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII |
Editors | Alexander N. Cartwright, Dan V. Nicolau |
Publisher | SPIE |
ISBN (Electronic) | 9781628419559 |
DOIs | |
Publication status | Published - 2016 |
Event | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII - San Francisco, United States Duration: 2016 Feb 15 → 2016 Feb 17 |
Publication series
Name | Progress in Biomedical Optics and Imaging - Proceedings of SPIE |
---|---|
Volume | 9721 |
ISSN (Print) | 1605-7422 |
Other
Other | Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 16/2/15 → 16/2/17 |
Bibliographical note
Publisher Copyright:© 2016 SPIE.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Biomaterials
- Radiology Nuclear Medicine and imaging