Planar variable reluctance magnetic micromotor with fully integrated stator and wrapped coils

Chong H. Ahn, Yong J. Kim, Mark G. Allen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Citations (Scopus)

Abstract

A new, fully functional, electrically excited planar variable reluctance magnetic micromotor has been demonstrated on a silicon wafer. The motor uses a micromachined nickel-iron rotor and a fully integrated stator, in which a new toroidal-meander type integrated inductive component is used for flux generation. To reduce the magnetic reluctance in the stator, a modified stator geometry was adopted which removes the yoke which is used in a conventional reluctance motor. Using polyimide as both an integral structural material and as an electroplating mold, a 40 μm thick nickel-iron rotor 500 μm in diameter was micro-assembled onto a fully integrated nickel-iron stator 120 μm in thickness. When 500 mA of current was applied to each stator, 12° of rotation (1 stroke in this motor) was observed. By applying three phase 200 mA current pulses to the stators, rotation of the rotor was observed. The speed and direction of the rotation could be adjusted by changing the frequency and phase firing order of the power supply respectively. Continuous rotor rotation was observed at speeds up to 500 rpm; this speed limitation was solely due to the limitation of the maximum frequency of the controller used. The predicted torque for the fabricated micromotor at 500 mA driving current was calculated to be 1.2 (μmN-m).

Original languageEnglish
Title of host publicationIEEE Micro Electro Mechanical Systems
PublisherPubl by IEEE
Pages1-6
Number of pages6
ISBN (Print)0780309588
Publication statusPublished - 1993
EventProceedings of the 1993 IEEE Micro Electro Mechanical Systems - MEMS - Fort Lauderdale, FL, USA
Duration: 1993 Feb 71993 Feb 10

Publication series

NameIEEE Micro Electro Mechanical Systems

Other

OtherProceedings of the 1993 IEEE Micro Electro Mechanical Systems - MEMS
CityFort Lauderdale, FL, USA
Period93/2/793/2/10

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Planar variable reluctance magnetic micromotor with fully integrated stator and wrapped coils'. Together they form a unique fingerprint.

Cite this