Abstract
Fabrication of nano- and microstructure-based anodes capable of accommodating the lithiation-induced strain, high specific capacity, and longer cycling stability is the principal challenge for developing next-generation lithium-ion batteries (LIBs) with higher energy density. Herein, we report a green route for fabricating porous molybdenum-doped cuprous oxide (Cu2O:Mo) microspheres of high specific surface area. The porous Cu2O:Mo microspheres have been utilized as active anode materials in LIBs, revealing excellent electrochemical performance. The electrodes fabricated with the porous Cu2O:Mo microspheres yielded outstanding Li-ion uptake performance, with a specific capacity of 1128 mAh g-1 at 0.1 Ag-1 and enhanced rate performance, and cycling stability (1082 mAh g-1 at 0.1 Ag-1 after 100 charge-discharge cycles). Enhanced specific capacity, stable cycling stability, and excellent rate capability of the fabricated electrodes indicate the porous Cu2O:Mo microspheres are potential anode material for fabricating next-generation high-performance LIBs. The synthetic approach adapted for fabricating the porous Cu2O:Mo microspheres is facile, relatively greener, and low-cost, which can be utilized for fabricating other metal oxide-based porous microstructures for application in energy storage devices.
Original language | English |
---|---|
Pages (from-to) | 14557-14567 |
Number of pages | 11 |
Journal | ACS Sustainable Chemistry and Engineering |
Volume | 8 |
Issue number | 38 |
DOIs | |
Publication status | Published - 2020 Sept 28 |
Bibliographical note
Funding Information:S.K.K. thanks CONACyT, Mexico, for the help extended through the cathedra of CONACyT project. Financial support extended by VIEP-BUAP and CONACyT (Grant No. CB-2018-A1-S-26720), Mexico, are thankfully acknowledged. The authors are grateful to M. A. Hernandez-Landaverde for technical assistance in the XRD analysis.
Publisher Copyright:
Copyright © 2020 American Chemical Society.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Environmental Chemistry
- Chemical Engineering(all)
- Renewable Energy, Sustainability and the Environment