TY - GEN
T1 - Pilot power ratio for uplink sum-rate maximization in zero-forcing based MU-MIMO systems with large number of antennas
AU - Min, Kyungsik
AU - Jung, Minchae
AU - Kim, Taehyung
AU - Kim, Younsun
AU - Lee, Juho
AU - Choi, Sooyong
PY - 2013
Y1 - 2013
N2 - This paper analyzes the pilot power ratio (PPR) in multiuser multiple-input multiple-output (MU-MIMO) systems with a large number of receive antennas (M) at the base station (BS). We consider zero-forcing based MU-MIMO orthogonal frequency division multiplexing (OFDM) systems. Based on the deterministic uplink sum-rate approximation for imperfect channel state information, we can formulate the optimization problems in terms of the PPR to maximize the ergodic uplink sum-rate subject to the per-slot or per-symbol power constraint. Under the per-slot power constraint, the optimal PPR can be obtained in a closed form while under the per-symbol power constraint, we propose an iterative algorithm which generates a suboptimal PPR. Simulation results show that the proposed PPRs perform close to the optimal performance in terms of the sum-rate. Also, it is shown that the proposed PPRs outperform the equal power allocation. In particular, in the ZF-R based MU-MIMO OFDM system with 8 users and M = 32 under the per-slot power constraint, the proposed PPR can achieve about 8bps/Hz performance gain compared to the equal power allocation.
AB - This paper analyzes the pilot power ratio (PPR) in multiuser multiple-input multiple-output (MU-MIMO) systems with a large number of receive antennas (M) at the base station (BS). We consider zero-forcing based MU-MIMO orthogonal frequency division multiplexing (OFDM) systems. Based on the deterministic uplink sum-rate approximation for imperfect channel state information, we can formulate the optimization problems in terms of the PPR to maximize the ergodic uplink sum-rate subject to the per-slot or per-symbol power constraint. Under the per-slot power constraint, the optimal PPR can be obtained in a closed form while under the per-symbol power constraint, we propose an iterative algorithm which generates a suboptimal PPR. Simulation results show that the proposed PPRs perform close to the optimal performance in terms of the sum-rate. Also, it is shown that the proposed PPRs outperform the equal power allocation. In particular, in the ZF-R based MU-MIMO OFDM system with 8 users and M = 32 under the per-slot power constraint, the proposed PPR can achieve about 8bps/Hz performance gain compared to the equal power allocation.
UR - http://www.scopus.com/inward/record.url?scp=84893338647&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84893338647&partnerID=8YFLogxK
U2 - 10.1109/VTCFall.2013.6692364
DO - 10.1109/VTCFall.2013.6692364
M3 - Conference contribution
AN - SCOPUS:84893338647
SN - 9781467361873
T3 - IEEE Vehicular Technology Conference
BT - 2013 IEEE 78th Vehicular Technology Conference, VTC Fall 2013
T2 - 2013 IEEE 78th Vehicular Technology Conference, VTC Fall 2013
Y2 - 2 September 2013 through 5 September 2013
ER -