Photophysical properties of porphyrin tapes

Hyun Sun Cho, Dae Hong Jeong, Sung Cho, Dongho Kim, Yoichi Matsuzaki, Kazuyoshi Tanaka, Akihiko Tsuda, Atsuhiro Osuka

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)


The novel fused Zn(II)porphyrin arrays (Tn, porphyrin tapes) in which the porphyrin macrocycles are triply linked at meso-meso, β-β, β-β positions have been investigated by steady-state and time-resolved spectroscopic measurements along with theoretical MO calculations. The absorption spectra of the porphyrin tapes show a systematic downshift to the IR region as the number of porphyrin pigments increases in the arrays. The fused porphyrin arrays exhibit a rapid formation of the lowest excited states (for T2, ∼500 fs) via fast internal conversion processes upon photoexcitation at 400 nm (Soret bands), which is much faster than the internal conversion process of ∼1.2 ps observed for a monomeric Zn(II)-porphyrin. The relaxation dynamics of the lowest excited states of the porphyrin tapes were accelerated from ∼4.5 ps for the T2 dimer to ∼0.3 ps for the T6 hexamer as the number of porphyrin units increases, being explained well by the energy gap law. The overall photophysical properties of the porphyrin tapes were observed to be in a sharp contrast to those of the orthogonal porphyrin arrays. The PPP-SCl calculated charge-transfer probability indicates that the lowest excited state of the porphyrin tapes (Tn) resembles a Wannier-type exciton closely, whereas the lowest excited state of the directly linked porphyrin arrays can be considered as a Frenkel-type exciton. Conclusively, these unique photophysical properties of the porphyrin tapes have aroused much interest in the fundamental photophysics of large flat organic molecules as well as in the possible applications as electric wires, IR sensors, and nonlinear optical materials.

Original languageEnglish
Pages (from-to)14642-14654
Number of pages13
JournalJournal of the American Chemical Society
Issue number49
Publication statusPublished - 2002 Dec 11

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry


Dive into the research topics of 'Photophysical properties of porphyrin tapes'. Together they form a unique fingerprint.

Cite this