PH-Dependent In-Cell Self-Assembly of Peptide Inhibitors Increases the Anti-Prion Activity while Decreasing the Cytotoxicity

Muhammad Waqas, Woo Jin Jeong, Young Joo Lee, Dae Hwan Kim, Chongsuk Ryou, Yong Beom Lim

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

The first step in the conventional approach to self-assembled biomaterials is to develop well-defined nanostructures in vitro, which is followed by disruption of the preformed nanostructures at the inside of the cell to achieve bioactivity. Here, we propose an inverse strategy to develop in-cell gain-of-function self-assembled nanostructures. In this approach, the supramolecular building blocks exist in a unimolecular/unordered state in vitro or at the outside of the cell and assemble into well-defined nanostructures after cell internalization. We used block copolypeptides of an oligoarginine and a self-assembling peptide as building blocks and investigated correlations among the nanostructural state, antiprion bioactivity, and cytotoxicity. The optimal bioactivity (i.e., the highest antiprion activity and lowest cytotoxicity) was obtained when the building blocks existed in a unimolecular/unordered state in vitro and during the cell internalization process, exerting minimal cytotoxic damage to cell membranes, and were subsequently converted into high-charge-density vesicles in the low pH endosome/lysosomes in vivo, thus, resulting in the significantly enhanced antiprion activity. In particular, the in-cell self-assembly concept presents a feasible approach to developing therapeutics against protein misfolding diseases. In general, the in-cell self-assembly provides a novel inverse methodology to supramolecular bionanomaterials.

Original languageEnglish
Pages (from-to)943-950
Number of pages8
JournalBiomacromolecules
Volume18
Issue number3
DOIs
Publication statusPublished - 2017 Mar 13

Bibliographical note

Funding Information:
TEM data acquisition and image processing were performed at the Division of Electron Microscopy Research, Korea Basic Science Institute. This work was supported by grants from the National Research Foundation (NRF) of Korea (2014R1A2A1A11050359, 2014M3A7B4051594) and Yonsei University Future-Leading Research Initiative. This research was also supported by grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health and Welfare, Republic of Korea (HI16C0965 HI16C1085) and the NRF of Korea (2012R1A1A2043356).

Publisher Copyright:
© 2017 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'PH-Dependent In-Cell Self-Assembly of Peptide Inhibitors Increases the Anti-Prion Activity while Decreasing the Cytotoxicity'. Together they form a unique fingerprint.

Cite this