Perturbative analysis on orbital kinematics of flybys and applications to Doppler observation

Youngkwang Kim, Sang Young Park

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


This paper presents a new analytical framework for Doppler covariance analysis of planetary flybys. Regardless of the strength of gravitational interaction, this analytical framework is applicable to both conservative and nonconservative perturbations. In this framework, first-order analytical formulas for position and velocity variation are derived for hyperbolic orbits, and a linear model of the Doppler observable is adopted for planetary flybys. Through this method, the analytical variance of the standard gravitational parameter is derived and analyzed for Doppler observations of planetary flybys. This analytical variance can predict the expected precision of the mass determination via analysis of Doppler observation data without regard for the strength of gravitational interactions. The analytical variance is also applicable to preliminary parametric analyses of flyby geometries for mass determinations. Two numerical simulations and one Monte Carlo simulation demonstrate the validity of the analytical framework and the analytical mass variance.

Original languageEnglish
Pages (from-to)1690-1698
Number of pages9
JournalJournal of Guidance, Control, and Dynamics
Issue number9
Publication statusPublished - 2015

Bibliographical note

Publisher Copyright:
Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Aerospace Engineering
  • Space and Planetary Science
  • Electrical and Electronic Engineering
  • Applied Mathematics


Dive into the research topics of 'Perturbative analysis on orbital kinematics of flybys and applications to Doppler observation'. Together they form a unique fingerprint.

Cite this