Abstract
Accessing machine learning models through remote APIs has been gaining prevalence following the recent trend of scaling up model parameters for increased performance. Even though these models exhibit remarkable ability, detecting out-of-distribution (OOD) samples remains a crucial safety concern for end users as these samples may induce unreliable outputs from the model. In this work, we propose an OOD detection framework, MixDiff, that is applicable even when the model's parameters or its activations are not accessible to the end user. To bypass the access restriction, MixDiff applies an identical input-level perturbation to a given target sample and a similar in-distribution (ID) sample, then compares the relative difference in the model outputs of these two samples. MixDiff is model-agnostic and compatible with existing output-based OOD detection methods. We provide theoretical analysis to illustrate MixDiff's effectiveness in discerning OOD samples that induce overconfident outputs from the model and empirically demonstrate that MixDiff consistently enhances the OOD detection performance on various datasets in vision and text domains.
Original language | English |
---|---|
Title of host publication | ECAI 2024 - 27th European Conference on Artificial Intelligence, Including 13th Conference on Prestigious Applications of Intelligent Systems, PAIS 2024, Proceedings |
Editors | Ulle Endriss, Francisco S. Melo, Kerstin Bach, Alberto Bugarin-Diz, Jose M. Alonso-Moral, Senen Barro, Fredrik Heintz |
Publisher | IOS Press BV |
Pages | 2066-2073 |
Number of pages | 8 |
ISBN (Electronic) | 9781643685489 |
DOIs | |
Publication status | Published - 2024 Oct 16 |
Event | 27th European Conference on Artificial Intelligence, ECAI 2024 - Santiago de Compostela, Spain Duration: 2024 Oct 19 → 2024 Oct 24 |
Publication series
Name | Frontiers in Artificial Intelligence and Applications |
---|---|
Volume | 392 |
ISSN (Print) | 0922-6389 |
ISSN (Electronic) | 1879-8314 |
Conference
Conference | 27th European Conference on Artificial Intelligence, ECAI 2024 |
---|---|
Country/Territory | Spain |
City | Santiago de Compostela |
Period | 24/10/19 → 24/10/24 |
Bibliographical note
Publisher Copyright:© 2024 The Authors.
All Science Journal Classification (ASJC) codes
- Artificial Intelligence