Abstract
Obesity, which is related to metabolic syndrome and is associated with liver disease, represents an epidemic problem demanding effective therapeutic strategies. Evidence shows that the Wnt/β-catenin pathway is closely associated with obesity and that small molecules regulating the Wnt/β-catenin pathway can potentially control adipogenesis related to obesity. Eleven plant extracts activating the Wnt/β-catenin pathway were screened by using HEK 293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. An extract of Persicaria hydropiper (L.) Spach was found to activate Wnt/β-catenin signaling. P. hydropiper is grown worldwide in temperate climates and is found widely in Southeast Asia. The P. hydropiper extract inhibited the differentiation of adipocyte 3T3-L1 cells. Isoquercitrin and isorhamnetin, constituents of P. hydropiper, also activated Wnt/β-catenin signaling and suppressed the differentiation of 3T3-L1 cells. These results indicate that isoquercitrin in P. hydropiper suppresses the adipogenesis of 3T3-L1 cells via the inhibition of Wnt/β-catenin signaling. P. hydropiper and isoquercitrin may therefore be potential therapeutic agents for obesity and its associated disorders.
Original language | English |
---|---|
Pages (from-to) | 1629-1635 |
Number of pages | 7 |
Journal | Phytotherapy Research |
Volume | 25 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2011 Nov |
All Science Journal Classification (ASJC) codes
- Pharmacology