Abstract
In this paper, we propose a novel approach which selects and estimates sensitive parameters of a nonlinear model using L1-regularization. A biomechanical model have many parameters to be estimated for accurate human body simulation. However, when we have insufficient data for estimation, it occurs the overfitting problem. Therefore, we reformulate the parameter update process of the Levenberg-Marquardt (LM) optimization in order to apply the least absolute shrinkage and selection operator (LASSO) to a nonlinear least squares problem. To show the effectiveness of our method, we compare our method with other methods from application of head-neck position tracking task. As a result, our method selects sensitive parameters with much shorter computation time than other method. In addition, our method maintains goodness of fit measured by Variance accounted for (VAF) at 82.45% although reducing the number of estimated parameters.
Original language | English |
---|---|
Title of host publication | Advanced Driver Assistance and Autonomous Technologies; Advances in Control Design Methods; Advances in Robotics; Automotive Systems; Design, Modeling, Analysis, and Control of Assistive and Rehabilitation Devices; Diagnostics and Detection; Dynamics and Control of Human-Robot Systems; Energy Optimization for Intelligent Vehicle Systems; Estimation and Identification; Manufacturing |
Publisher | American Society of Mechanical Engineers (ASME) |
ISBN (Electronic) | 9780791859148 |
DOIs | |
Publication status | Published - 2019 |
Event | ASME 2019 Dynamic Systems and Control Conference, DSCC 2019 - Park City, United States Duration: 2019 Oct 8 → 2019 Oct 11 |
Publication series
Name | ASME 2019 Dynamic Systems and Control Conference, DSCC 2019 |
---|---|
Volume | 1 |
Conference
Conference | ASME 2019 Dynamic Systems and Control Conference, DSCC 2019 |
---|---|
Country/Territory | United States |
City | Park City |
Period | 19/10/8 → 19/10/11 |
Bibliographical note
Funding Information:This work was supported by the Mid-career Research Program through the National Research Foundation of Ko- rea (NRF) funded by the Ministry of Science and ICT (NRF-2018R1A2B6008063).
Funding Information:
This work was supported by the Mid-career Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2018R1A2B6008063).
Publisher Copyright:
Copyright © 2019 ASME
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Mechanical Engineering
- Industrial and Manufacturing Engineering