Parallel, Self-Organizing, Hierarchical Neural Networks—II

Okan K. Ersoy, Daesik Hong

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Parallel, self-organizing hierarchical neural networks (PSHNN's) involve a number of stages with error detection at the end of each stage, rejection of error-causing vectors, which are then fed into the next stage after a nonlinear transformation. The stages operate in parallel during testing. Statistical properties and the mechanisms of vector rejection of the PSHNN are discussed in comparison to the maximum likelihood method and the backpropagation network. The PSHNN is highly fault tolerant and robust against errors in the weight values due to the adjustment of the error detection bounds to compensate errors in the weight values. These properties are exploited to develop architectures for programmable implementations in which the programmable parts are reduced to on—off or bipolar switching operations for bulk computations and attenuators for pointwise operations.

Original languageEnglish
Pages (from-to)218-227
Number of pages10
JournalIEEE Transactions on Industrial Electronics
Issue number2
Publication statusPublished - 1993 Apr

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Parallel, Self-Organizing, Hierarchical Neural Networks—II'. Together they form a unique fingerprint.

Cite this