Abstract
We synthesized a novel thermally-crosslinkable ormosil-based hybrid material as a solution-processable dielectric layer for organic thin-film transistors (OTFTs). Dielectrics with a thickness of 50-260 nm were fabricated via spin-coating in order to evaluate their applicability as an ultra-thin gate dielectric. It was observed that the capacitance of the hybrid dielectric increases with decreasing film thickness. Hybrid dielectrics with a thickness of 260 nm and 160 nm, respectively, exhibited adequate leakage current behavior. Coplanar-type OTFTs were fabricated using each of the hybrid dielectrics (i.e., thickness of 260 nm and 160 nm). The off-current, threshold voltage, and field-effect mobility of both transistors were analyzed to investigate the effects of capacitance and film thickness on the electrical performance of the transistors.
Original language | English |
---|---|
Pages (from-to) | 7701-7705 |
Number of pages | 5 |
Journal | Thin Solid Films |
Volume | 515 |
Issue number | 19 SPEC. ISS. |
DOIs | |
Publication status | Published - 2007 Jul 16 |
Bibliographical note
Funding Information:This work was supported by the National Research Laboratory (NRL) Program of the Korea Science and Engineering Foundation.
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry