Optimization of explosive fumes ventilation layout in vacuum pressure impregnation process

Yup Yoo, Jonghun Lim, Juwon Lee, Junghwan Kim, Hyungtae Cho

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Vacuum pressure impregnation (VPI) is a primary process by which epoxy resin is impregnated into the stator windings of large generators and motors to enhance their physical properties. However, the vaporization of epoxy resin generates hazardous resin fumes during the VPI process, and the residual fumes leak into the atmosphere. This leakage is a safety and environmental hazard in the workplace as it can cause fire, explosion, and respiratory diseases. Therefore, it is crucial to reduce the hazard by designing an optimal ventilation system. This study proposed optimization of the explosive fumes ventilation Layout in the VPI process using computational fluid dynamics (CFD). A total of 12 Layouts of the ventilation system was designed according to the air inlet and outlet positions. This investigation used the pseudo transient method and the RNG k–ε turbulence model. An optimal Layout with the highest ventilation efficiency and the shortest LEL arrival time was determined through CFD analysis. In the optimal Layout, the LEL arrival time was 372 s, down about 59% from the model presented in the previous study, and the ventilation efficiency was the highest at 0.962.

Original languageEnglish
Pages (from-to)49-61
Number of pages13
JournalProcess Safety and Environmental Protection
Volume160
DOIs
Publication statusPublished - 2022 Apr

Bibliographical note

Publisher Copyright:
© 2022 The Author(s)

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • General Chemical Engineering
  • Safety, Risk, Reliability and Quality

Fingerprint

Dive into the research topics of 'Optimization of explosive fumes ventilation layout in vacuum pressure impregnation process'. Together they form a unique fingerprint.

Cite this