Abstract
Pretreatment of the empty fruit brunch (EFB) from oil palm was investigated for H2 fermentation. The EFB was hydrolyzed at various temperatures, H2SO4 concentrations, and reaction times. Subsequently, the acid-hydrolysate underwent enzymatic saccharification under various temperature, pH, and enzymatic loading conditions. Response surface methodology derived the optimum sugar concentration (SC), hydrogen production rate (HPR), and hydrogen yield (HY) as 28.30 g L−1, 2601.24 mL H2 L−1d−1, and 275.75 mL H2 g−1 total sugar (TS), respectively, at 120 °C, 60 min of reaction, and 6 vol% H2SO4, with the combined severity factor of 1.75. Enzymatic hydrolysis enhanced the SC, HY, and HPR to 34.52 g L−1, 283.91 mL H2 g−1 TS, and 3266.86 mL H2 L−1d−1, respectively, at 45 °C, pH 5.0, and 1.17 mg enzyme mL−1. Dilute acid hydrolysis would be a viable pretreatment for biohydrogen production from EFB. Subsequent enzymatic hydrolysis can be performed if enhanced HPR is required.
Original language | English |
---|---|
Pages (from-to) | 2191-2202 |
Number of pages | 12 |
Journal | International Journal of Hydrogen Energy |
DOIs | |
Publication status | Published - 2019 Jan 22 |
Bibliographical note
Funding Information:The authors acknowledge the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP, No. 2017R1A2A2A07000900 ).
Publisher Copyright:
© 2018 Hydrogen Energy Publications LLC
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology