TY - GEN
T1 - Optically guided neuronal growth at near-infrared wavelengths
AU - Stevenson, D. J.
AU - Lake, T. K.
AU - Agate, B.
AU - Garcés-Chávez, V.
AU - Dholakia, K.
AU - Gunn-Moore, F.
PY - 2006
Y1 - 2006
N2 - Recent work has indicated the potential of light to guide the growth cones of neuronal cells using a Ti: Sapphire laser at 800 nm (Ehrlicher et al, PNAS, 2002). We have developed an optical set-up that has allowed, for the first time, the direct comparison of this process at near infrared wavelengths. A high number of growth cones were studied in order to provide a detailed statistical analysis. Actively extending growth cones of the neuroblastoma cell-line, NG108, can be guided at not only 780 nm, but also at 1064 nm. These wavelengths are an appropriate choice for guidance experiments, as wavelengths in the visible spectrum and UV are highly absorbing by cells and lead to death by phototoxicity and thermal stress. At 780 nm, 47% of actively extending growth cones were found to turn towards the focused incident light by at least 30° (n=32 growth cones). At 1064 nm, 61% of cells were successfully guided (n=31 growth cones). This suggests that the light detection mechanism within the cell is not due a single protein with a defined activity wavelength as occurs for example with the photoreceptor family of opsin proteins in the mammalian eye. We present two novel mechanisms of light induced neuronal guidance which are not related to temperature increases, or optical tweezing of the growth cone. We are also now identifying the signaling pathways that mediate this phenomenon.
AB - Recent work has indicated the potential of light to guide the growth cones of neuronal cells using a Ti: Sapphire laser at 800 nm (Ehrlicher et al, PNAS, 2002). We have developed an optical set-up that has allowed, for the first time, the direct comparison of this process at near infrared wavelengths. A high number of growth cones were studied in order to provide a detailed statistical analysis. Actively extending growth cones of the neuroblastoma cell-line, NG108, can be guided at not only 780 nm, but also at 1064 nm. These wavelengths are an appropriate choice for guidance experiments, as wavelengths in the visible spectrum and UV are highly absorbing by cells and lead to death by phototoxicity and thermal stress. At 780 nm, 47% of actively extending growth cones were found to turn towards the focused incident light by at least 30° (n=32 growth cones). At 1064 nm, 61% of cells were successfully guided (n=31 growth cones). This suggests that the light detection mechanism within the cell is not due a single protein with a defined activity wavelength as occurs for example with the photoreceptor family of opsin proteins in the mammalian eye. We present two novel mechanisms of light induced neuronal guidance which are not related to temperature increases, or optical tweezing of the growth cone. We are also now identifying the signaling pathways that mediate this phenomenon.
UR - http://www.scopus.com/inward/record.url?scp=33751425351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33751425351&partnerID=8YFLogxK
U2 - 10.1117/12.680554
DO - 10.1117/12.680554
M3 - Conference contribution
AN - SCOPUS:33751425351
SN - 0819464058
SN - 9780819464057
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Optical Trapping and Optical Micromanipulation III
T2 - Optical Trapping and Optical Micromanipulation III
Y2 - 13 August 2006 through 17 August 2006
ER -