Abstract
An organic–inorganic hybrid bi-layer film with a selective distribution of inorganic components was synthesized from a one-pot process of UV irradiation. A photochemical metal oxide precursor (Sr 2-ethylhexanoate) varying from 0 to 4 wt% was dispersed in UV-curable coating materials. Under UV exposure, the bi-layer started reacting simultaneously but at different rates due to differences in the two UV-condensable components’ reactivity. The effects of the dispersed inorganic component on the surface morphology and mechanical properties were investigated by atomic force microscopy and nanoindentation, respectively. The reaction process and rates were studied from linkage change using Fourier transform infrared spectroscopy at various UV exposure times (0–30 min). The elemental distribution and the interface on the coating layer were characterized by X-ray photoelectron spectroscopy from Ar etching, revealing continuous and gradual composition changes in depth. The results showed that a flattened and surface-selectively hardened SrO containing the coating film could be obtained by this simple process. Consequently, a small ratio of photochemical metal oxide reinforced the organic hard coating film's mechanical properties through the formation of an effective SrO top layer.
Original language | English |
---|---|
Pages (from-to) | 882-888 |
Number of pages | 7 |
Journal | Applied Surface Science |
Volume | 389 |
DOIs | |
Publication status | Published - 2016 Dec 15 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1A2A1A15054541 ).
Publisher Copyright:
© 2016 Elsevier B.V.
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Condensed Matter Physics
- Physics and Astronomy(all)
- Surfaces and Interfaces
- Surfaces, Coatings and Films