One-Sided Schmitt-Trigger-Based 9T SRAM Cell for Near-Threshold Operation

Keonhee Cho, Juhyun Park, Tae Woo Oh, Seong Ook Jung

Research output: Contribution to journalArticlepeer-review

51 Citations (Scopus)

Abstract

This paper presents a one-sided Schmitt-Trigger-based 9T static random access memory cell with low energy consumption and high read stability, write ability, and hold stability yields in a bit-interleaving structure without write-back scheme. The proposed Schmitt-Trigger-based 9T static random access memory cell obtains a high read stability yield by using a one-sided Schmitt-Trigger inverter with a single bit-line structure. In addition, the write ability yield is improved by applying selective power gating and a Schmitt-Trigger inverter write assist technique that controls the trip voltage of the Schmitt-Trigger inverter. The proposed Schmitt-Trigger-based 9T static random access memory cell has 0.79, 0.77, and 0.79 times the area, and consumes 0.31, 0.68, and 0.90 times the energy of Chang's 10T, the Schmitt-Trigger-based 10T, and MH's 9T static random access memory cells, respectively, based on 22-nm FinFET technology.

Original languageEnglish
Article number9014534
Pages (from-to)1551-1561
Number of pages11
JournalIEEE Transactions on Circuits and Systems I: Regular Papers
Volume67
Issue number5
DOIs
Publication statusPublished - 2020 May

Bibliographical note

Funding Information:
Manuscript received August 22, 2019; revised December 11, 2019, January 3, 2020, and January 5, 2020; accepted January 5, 2020. Date of publication February 26, 2020; date of current version May 1, 2020. This work was supported by the IT Research and Development Program of MOTIE/KEIT under Grant 10052716 and in part by the Design Technology Development of Ultra-Low Voltage Operating Circuit and IP for Smart Sensor SoC. This article was recommended by Associate Editor M. Mozaffari Kermani. (Corresponding author: Seong-Ook Jung.) The authors are with the School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea (e-mail: sjung@yonsei.ac.kr).

Publisher Copyright:
© 2004-2012 IEEE.

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'One-Sided Schmitt-Trigger-Based 9T SRAM Cell for Near-Threshold Operation'. Together they form a unique fingerprint.

Cite this