TY - JOUR
T1 - On the gas-phase dimerization of negatively charged closo-dodecaborates
T2 - A theoretical study
AU - Zeonjuk, Lei Liu
AU - Vankova, Nina
AU - Knapp, Carsten
AU - Gabel, Detlef
AU - Heine, Thomas
PY - 2013/7/7
Y1 - 2013/7/7
N2 - We have studied the intriguing gas-phase dimerization of the B 12In- (n = 9, 8) anions to B24I 2n2- dianions by means of density functional theory calculations. The dimerization of B12I9- to B24I182- has been detected experimentally in a previous study (Phys. Chem. Chem. Phys., 2011, 13, 5712) utilizing electrospray ionization ion trap mass spectrometry (ESI-IT-MS), whereas the formation of B24I162- from B12I8 - is modeled here prior to experiment. Calculations are carried out to determine the molecular and electronic structures, the bonding situation and the stability of the dimers relative to the respective monomers. The dimerization process is found to be thermodynamically favorable, and the stability of the lowest-energy structures is substantiated by molecular dynamics simulations. The calculations imply that the experimentally observed B 24I182- and the hypothetical B 24I162- species are formed through dimerization of the respective B12In- (n = 9, 8) monomers, rather than through loss of two I radicals from B24I 2n+22- dimers. Electronic properties such as natural charges, vertical detachment energies (VDEs), frontier molecular orbitals (FMOs), and HOMO-LUMO gaps are computed and analyzed in detail for all monomers and dimers. The analysis shows that the most stable B24I 2n2- dimers are formed through two 2c-2e B-B and two 3c-2e B-I-B bridges between the parent B12In- (n = 9, 8) monomers. These new bridging bonds engage the deiodinated (bare) faces of the two B12 icosahedra, as well as one (per monomer) of the nearest boron neighbors and its iodine substituent.
AB - We have studied the intriguing gas-phase dimerization of the B 12In- (n = 9, 8) anions to B24I 2n2- dianions by means of density functional theory calculations. The dimerization of B12I9- to B24I182- has been detected experimentally in a previous study (Phys. Chem. Chem. Phys., 2011, 13, 5712) utilizing electrospray ionization ion trap mass spectrometry (ESI-IT-MS), whereas the formation of B24I162- from B12I8 - is modeled here prior to experiment. Calculations are carried out to determine the molecular and electronic structures, the bonding situation and the stability of the dimers relative to the respective monomers. The dimerization process is found to be thermodynamically favorable, and the stability of the lowest-energy structures is substantiated by molecular dynamics simulations. The calculations imply that the experimentally observed B 24I182- and the hypothetical B 24I162- species are formed through dimerization of the respective B12In- (n = 9, 8) monomers, rather than through loss of two I radicals from B24I 2n+22- dimers. Electronic properties such as natural charges, vertical detachment energies (VDEs), frontier molecular orbitals (FMOs), and HOMO-LUMO gaps are computed and analyzed in detail for all monomers and dimers. The analysis shows that the most stable B24I 2n2- dimers are formed through two 2c-2e B-B and two 3c-2e B-I-B bridges between the parent B12In- (n = 9, 8) monomers. These new bridging bonds engage the deiodinated (bare) faces of the two B12 icosahedra, as well as one (per monomer) of the nearest boron neighbors and its iodine substituent.
UR - http://www.scopus.com/inward/record.url?scp=84881114906&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881114906&partnerID=8YFLogxK
U2 - 10.1039/c3cp50722j
DO - 10.1039/c3cp50722j
M3 - Article
C2 - 23677220
AN - SCOPUS:84881114906
SN - 1463-9076
VL - 15
SP - 10358
EP - 10366
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 25
ER -