Observation of conductive filaments in a resistive switching nonvolatile memory device based on amorphous InGaZnO thin films

Youn Hee Kang, Tae Il Lee, Kyeong Ju Moon, Jiwon Moon, Kwon Hong, Joong Hwee Cho, Woong Lee, Jae Min Myoung

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Resistive switching mechanism was investigated on a model nonvolatile memory device structure composed of an amorphous InGaZnO (a-IGZO) insulator layer and TiN and indium tin oxide (ITO) electrodes by directly observing the microstructural and compositional changes in the device during the switching operation. In the pristine state, microstructure of the device was characterized by well-defined smooth interface between the a-IGZO switching layer and electrodes. Once the device is in a set state by applying positive bias to the TiN electrode, the TiN/a-IGZO interface became markedly rough with irregularly localized structures protruded into the a-IGZO layer from the TiN electrode. Transmission electron microscopy revealed that these protruded structures are polycrystalline TiN which have been formed by the migration of Ti species during the voltage sweep due to the electric field between positively biased TiN and grounded ITO electrodes. The device structures showed bistable unipolar switching behavior while they were transparent to visible light with reasonable transmittance of about 77%.

Original languageEnglish
Pages (from-to)623-627
Number of pages5
JournalMaterials Chemistry and Physics
Issue number2-3
Publication statusPublished - 2013 Mar 15

Bibliographical note

Funding Information:
This work was supported by WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology ( R32-20031 ), and the academic–industrial cooperation program funded by SK Hynix Semiconductor Inc. ( 2008-8-0306 ).

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics


Dive into the research topics of 'Observation of conductive filaments in a resistive switching nonvolatile memory device based on amorphous InGaZnO thin films'. Together they form a unique fingerprint.

Cite this