Numerical simulation of effects of mesoflaps in controlling shock/boundary-layer interactions

Santanu Ghosh, Jack R. Edwards, Jung Il Choi

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


This work uses an immersed-boundary method to simulate the effects of an array of aeroelastic mesoflaps in controlling oblique shock/turbulent boundary-layer interactions. A loosely coupled approach is adopted for the fluid-structure interaction problem, with separate solvers used for the fluid and the structure. The mesoflaps are rendered as immersed objects for the fluid solver and modeled as cantilevered Euler-Bernoulli beams for the structural solver. Simulations are performed for a Mach 2.46 shock/boundary-layer interaction with and without control, based on experiments conducted at University of Illinois at Urbana-Champaign. Both Reynolds-averaged Navier-Stokes and hybrid large-eddy/Reynolds-averaged Navier-Stokes turbulence closures are used. Comparisons made with experimental laser Doppler anemometry data and wall pressure measurements for flows with and without control show reasonable agreement, with better predictions away from the separation region. An analysis of the flow indicates that the mesoflap control system does not eliminate axial flow separation. Also, analysis of the frequency content of the mesoflap deflections suggests that a correlation might exist between the dominant frequency of the Euler-Bernoulli flap deflection and the low-frequency shock motion observed in separated flows.

Original languageEnglish
Pages (from-to)955-970
Number of pages16
JournalJournal of Propulsion and Power
Issue number5
Publication statusPublished - 2012

Bibliographical note

Funding Information:
This work has been supported by the U.S. Air Force Office of Scientific Research under grant no. FA9550-07-1-0191, monitored by John Schmisseur. Computer resources have been provided by the High Performance Computing component of North Carolina State University’s Information Technologies Division.

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Fuel Technology
  • Mechanical Engineering
  • Space and Planetary Science


Dive into the research topics of 'Numerical simulation of effects of mesoflaps in controlling shock/boundary-layer interactions'. Together they form a unique fingerprint.

Cite this