Abstract
Motion blur is a common photography artifact in dynamic environments that typically comes jointly with the other types of degradation. This paper reviews the NTIRE 2021 Challenge on Image Deblurring. In this challenge report, we describe the challenge specifics and the evaluation results from the 2 competition tracks with the proposed solutions. While both the tracks aim to recover a high-quality clean image from a blurry image, different artifacts are jointly involved. In track 1, the blurry images are in a low resolution while track 2 images are compressed in JPEG format. In each competition, there were 338 and 238 registered participants and in the final testing phase, 18 and 17 teams competed. The winning methods demonstrate the state-of-the-art performance on the image deblurring task with the jointly combined artifacts.
Original language | English |
---|---|
Title of host publication | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 |
Publisher | IEEE Computer Society |
Pages | 149-165 |
Number of pages | 17 |
ISBN (Electronic) | 9781665448994 |
DOIs | |
Publication status | Published - 2021 Jun |
Event | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 - Virtual, Online, United States Duration: 2021 Jun 19 → 2021 Jun 25 |
Publication series
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
ISSN (Print) | 2160-7508 |
ISSN (Electronic) | 2160-7516 |
Conference
Conference | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 |
---|---|
Country/Territory | United States |
City | Virtual, Online |
Period | 21/6/19 → 21/6/25 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering