Abstract
This paper reviews the first challenge on image dehazing (restoration of rich details in hazy image) with focus on proposed solutions and results. The challenge had 2 tracks. Track 1 employed the indoor images (using I-HAZE dataset), while Track 2 outdoor images (using O-HAZE dataset). The hazy images have been captured in presence of real haze, generated by professional haze machines. I-HAZE dataset contains 35 scenes that correspond to indoor domestic environments, with objects with different colors and specularities. O-HAZE contains 45 different outdoor scenes depicting the same visual content recorded in haze-free and hazy conditions, under the same illumination parameters. The dehazing process was learnable through provided pairs of haze-free and hazy train images. Each track had ~ 120 registered participants and 21 teams competed in the final testing phase. They gauge the state-of-the-art in image dehazing.
Original language | English |
---|---|
Title of host publication | Proceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 |
Publisher | IEEE Computer Society |
Pages | 1004-1014 |
Number of pages | 11 |
ISBN (Electronic) | 9781538661000 |
DOIs | |
Publication status | Published - 2018 Dec 13 |
Event | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 - Salt Lake City, United States Duration: 2018 Jun 18 → 2018 Jun 22 |
Publication series
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
Volume | 2018-June |
ISSN (Print) | 2160-7508 |
ISSN (Electronic) | 2160-7516 |
Other
Other | 31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2018 |
---|---|
Country/Territory | United States |
City | Salt Lake City |
Period | 18/6/18 → 18/6/22 |
Bibliographical note
Publisher Copyright:© 2018 IEEE.
All Science Journal Classification (ASJC) codes
- Computer Vision and Pattern Recognition
- Electrical and Electronic Engineering