NOX inhibitors - A promising avenue for ischemic stroke

Jong Youl Kim, Joohyun Park, Jong Eun Lee, Midori A. Yenari

Research output: Contribution to journalReview articlepeer-review

41 Citations (Scopus)


NADPH-oxidase (NOX) mediated superoxide originally found on leukocytes, but now recognized in several types of cells in the brain. It has been shown to play an important role in the progression of stroke and related cerebrovascular disease. NOX is a multisubunit complex consisting of 2 membrane-associated and 4 cytosolic subunits. NOX activation occurs when cytosolic subunits translocate to the membrane, leading to transport electrons to oxygen, thus producing superoxide. Superoxide produced by NOX is thought to function in long-term potentiation and intercellular signaling, but excessive production is damaging and has been implicated to play an important role in the progression of ischemic brain. Thus, inhibition of NOX activity may prove to be a promising treatment for ischemic brain as well as an adjunctive agent to prevent its secondary complications. There is mounting evidence that NOX inhibition in the ischemic brain is neuroprotective, and targeting NOX in circulating immune cells will also improve outcome. This review will focus on therapeutic effects of NOX assembly inhibitors in brain ischemia and stroke. However, the lack of specificity and toxicities of existing inhibitors are clear hurdles that will need to be overcome before this class of compounds could be translated clinically.

Original languageEnglish
Pages (from-to)195-205
Number of pages11
JournalExperimental Neurobiology
Issue number4
Publication statusPublished - 2017 Aug 1

Bibliographical note

Publisher Copyright:
© Experimental Neurobiology 2017.

All Science Journal Classification (ASJC) codes

  • Clinical Neurology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'NOX inhibitors - A promising avenue for ischemic stroke'. Together they form a unique fingerprint.

Cite this