TY - JOUR
T1 - Noncollinear antiferromagnetic order in the buckled honeycomb lattice of magnetoelectric Co4Ta2 O9 determined by single-crystal neutron diffraction
AU - Choi, Sungkyun
AU - Oh, Dong Gun
AU - Gutmann, Matthias J.
AU - Pan, Shangke
AU - Kim, Gideok
AU - Son, Kwanghyo
AU - Kim, Jaewook
AU - Lee, Nara
AU - Cheong, Sang Wook
AU - Choi, Young Jai
AU - Kiryukhin, Valery
N1 - Publisher Copyright:
© 2020 American Physical Society.
PY - 2020/12/2
Y1 - 2020/12/2
N2 - Co4Ta2O9 exhibits a three-dimensional magnetic lattice based on the buckled honeycomb motif. It shows unusual magnetoelectric effects, including the sign change and nonlinearity. These effects cannot be understood without the detailed knowledge of the magnetic structure. Herein, we report neutron diffraction and direction-dependent magnetic susceptibility measurements on Co4Ta2O9 single crystals. Below 20.3 K, we find a long-range antiferromagnetic order in the alternating buckled and flat honeycomb layers of Co2+ ions stacked along the c axis. Within experimental accuracy, the magnetic moments lie in the ab plane. They form a canted antiferromagnetic structure with a tilt angle of ∼14∘ at 15 K in the buckled layers, while the magnetic moments in each flat layer are collinear. This is directly evidenced by a finite (0, 0, 3) magnetic Bragg peak intensity, which would be absent in the collinear magnetic order. The magnetic space group is C2′/c. It is different from the previously reported C2/c′ group, also found in the isostructural Co4Nb2O9. The revised magnetic structure successfully explains the major features of the magnetoelectric tensor of Co4Ta2O9 within the framework of the spin-flop model.
AB - Co4Ta2O9 exhibits a three-dimensional magnetic lattice based on the buckled honeycomb motif. It shows unusual magnetoelectric effects, including the sign change and nonlinearity. These effects cannot be understood without the detailed knowledge of the magnetic structure. Herein, we report neutron diffraction and direction-dependent magnetic susceptibility measurements on Co4Ta2O9 single crystals. Below 20.3 K, we find a long-range antiferromagnetic order in the alternating buckled and flat honeycomb layers of Co2+ ions stacked along the c axis. Within experimental accuracy, the magnetic moments lie in the ab plane. They form a canted antiferromagnetic structure with a tilt angle of ∼14∘ at 15 K in the buckled layers, while the magnetic moments in each flat layer are collinear. This is directly evidenced by a finite (0, 0, 3) magnetic Bragg peak intensity, which would be absent in the collinear magnetic order. The magnetic space group is C2′/c. It is different from the previously reported C2/c′ group, also found in the isostructural Co4Nb2O9. The revised magnetic structure successfully explains the major features of the magnetoelectric tensor of Co4Ta2O9 within the framework of the spin-flop model.
UR - http://www.scopus.com/inward/record.url?scp=85097584236&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097584236&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.102.214404
DO - 10.1103/PhysRevB.102.214404
M3 - Article
AN - SCOPUS:85097584236
SN - 2469-9950
VL - 102
JO - Physical Review B
JF - Physical Review B
IS - 21
M1 - 214404
ER -