Abstract
A new type of nonvolatile ferroelectric poly(vinylidene fluoride-cotrifluoroethylene) (P(VDF-TrFE)) memory based on an organic thin-film transistor (OTFT) with a single crystal of tri-isopropylsilylethynyl pentacene (TIPS-PEN) as the active layer is developed. A bottom-gate OTFT is fabricated with a thin P(VDF-TrFE) film gate insulator on which a one-dimensional ribbon-type TIPS-PEN single crystal, grown via a solvent-exchange method, is positioned between the Au source and drain electrodes. Post-thermal treatment optimizes the interface between the flat, single-crystalline ab plane of TIPS-PEN and the polycrystalline P(VDF-TrFE) surface with characteristic needle-like crystalline lamellae. As a consequence, the memory device exhibits a substantially stable source-drain current modulation with an ON/ OFF ratio hysteresis greater than 103, which is superior to a ferroelectric P(VDF-TrFE) OTFT that has a vacuum-evaporated pentacene layer. Data retention longer than 5×104 s is additionally achieved in ambient conditions by incorporating an interlayer between the gate electrode and P(VDF-TrFE) thin film. The device is environmentally stable for more than 40 days without additional passivation. The deposition of a seed solution of TIPS-PEN on the chemically micropatterned surface allows fabrication arrays of TIPS-PEN single crystals that can be potentially useful for integrated arrays of ferroelectric polymeric TFT memory.
Original language | English |
---|---|
Pages (from-to) | 1609-1616 |
Number of pages | 8 |
Journal | Advanced Functional Materials |
Volume | 19 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2009 May 22 |
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Materials Science(all)
- Condensed Matter Physics