Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

Sohyun Hwang, Chan Yeong Kim, Sun Gou Ji, Junhyeok Go, Hanhae Kim, Sunmo Yang, Hye Jin Kim, Ara Cho, Sang Sun Yoon, Insuk Lee

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

Original languageEnglish
Article number26223
JournalScientific reports
Volume6
DOIs
Publication statusPublished - 2016 May 19

Bibliographical note

Funding Information:
This work was supported by grants from the National Research Foundation of Korea (2012M3A9B4028641, 2012M3A9C7050151, and 2015R1A2A1A15055 to I.L. and 2014R1A2A2A01002861 and 2014R1A4A1008625 to S.S.Y.)

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa'. Together they form a unique fingerprint.

Cite this