Nanomotor tracking experiments at the edge of reproducibility

Filip Novotný, Martin Pumera

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


The emerging field of self-propelling micro/nanorobots is teeming with a wide variety of novel micro/nanostructures, which are tested here for self-propulsion in a liquid environment. As the size of these microscopic movers diminishes into the fully nanosized region, the ballistic paths of an active micromotor become a random walk of colloidal particles. To test such colloidal samples for self-propulsion, the commonly adopted “golden rule” is to refer to the mean squared displacement (MSD) function of the measured particle tracks. The practical significance of the result strongly depends on the amount of collected particle data and the sampling rate of the particle track. Because micro/nanomotor preparation methods are mostly low-yield, the amount of used experimental data in published results is often on the edge of reproducibility. To address the situation, we perform MSD analysis on an experimental as well as simulated dataset. These data are used to explore the effects of MSD analysis on limited data and several situations where the lack of data can lead to insignificant results.

Original languageEnglish
Article number13222
JournalScientific reports
Issue number1
Publication statusPublished - 2019 Dec 1

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

All Science Journal Classification (ASJC) codes

  • General


Dive into the research topics of 'Nanomotor tracking experiments at the edge of reproducibility'. Together they form a unique fingerprint.

Cite this