Abstract
Inflatable deployable structures are practical and promising candidates for serving various aerospace missions, for instance, as solar sails, antennas, space suits, and especially Lunar and Mars habitats. These structures feature flexible composites folded at high packing efficiency, which can drastically reduce launch costs. However, they can also be damaged due to the harsh extraterrestrial operating conditions, which can propagate to cause catastrophic mission failure and endanger crew safety. Therefore, it is imperative to integrate a robust structural health monitoring (SHM) system, so that damage and faults can be detected for ensuring their safe and reliable operations. While a variety of SHM technologies have been developed for monitoring conventional, rigid, structural systems, they are faced with challenges when used for these unconventional flexible and inflatable systems. Therefore, a flexible carbon nanotube-fabric nanocomposite sensor is proposed in this study for monitoring the integrity of inflatable space structures. In particular, CNT-based thin films were fabricated by spraying and then integrated with flexible fabric to form the lightweight sensor. By coupling fabric sensors with an electrical impedance tomography (EIT) algorithm, the fabric's distribution of spatial resistivity can be mapped using only electrical measurements obtained along the material's boundaries. The severity and location of localized pressure and impact damage can be captured by observing changes in the EIT-calculated resistivity maps. They can be embedded in inflatable habitat structures to detect and locate abnormally high pressure regions and impact damage.
Original language | English |
---|---|
Title of host publication | Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring |
Publisher | American Society of Mechanical Engineers |
ISBN (Electronic) | 9780791850480 |
DOIs | |
Publication status | Published - 2016 |
Event | ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016 - Stowe, United States Duration: 2016 Sept 28 → 2016 Sept 30 |
Publication series
Name | ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016 |
---|---|
Volume | 1 |
Conference
Conference | ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2016 |
---|---|
Country/Territory | United States |
City | Stowe |
Period | 16/9/28 → 16/9/30 |
Bibliographical note
Publisher Copyright:Copyright © 2016 by ASME.
All Science Journal Classification (ASJC) codes
- Building and Construction
- Civil and Structural Engineering
- Control and Systems Engineering
- Mechanics of Materials