Abstract
The discovery of the Sagittarius dwarf galaxy, which is being tidally disrupted by and merging with the Milky Way, supports the view that the halo of the Galaxy has been built up at least partially by the accretion of similar dwarf systems. The Sagittarius dwarf contains several distinct populations of stars, and includes M54 as its nucleus, which is the second most massive globular cluster associated with the Milky Way. The most massive globular cluster is ω Centauri, and here we report that ω Centauri also has several distinct stellar populations, as traced by red-giant-branch stars. The most metal-rich red-giant-branch stars are about 2 Gyr younger than the dominant metal-poor component, indicating that ω Centauri was enriched over this timescale. The presence of more than one epoch of star formation in a globular cluster is quite surprising, and suggests that ω Centauri was once part of a more massive system that merged with the Milky Way, as the Sagittarius dwarf galaxy is in the process of doing now. Mergers probably were much more frequent in the early history of the Galaxy and ω Centauri appears to be a relict of this era.
Original language | English |
---|---|
Pages (from-to) | 55-57 |
Number of pages | 3 |
Journal | Nature |
Volume | 402 |
Issue number | 6757 |
DOIs | |
Publication status | Published - 1999 Nov 4 |
All Science Journal Classification (ASJC) codes
- General