Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts

Adriano Ambrosi, Martin Pumera

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)


Additive manufacturing (AM) is reaching a stage of development that enables high throughput fabrication of end products/devices. An important contribution to the advancement of this technology is given by the possibility to combine different materials into a single printing process or integrate diverse technologies for the fabrication of different components. Here we show how a prototype water electrolyzer can be fabricated using two different AM technologies, named selective laser melting and fused deposition modeling to produce the metallic components (electrodes) and the liquid/gas handling components (cells) of the electrolyzer, respectively. Both components are produced following a precise design which enables their perfect integration and assembly. The electrodes are produced in stainless steel which can be directly used for both the cathodic hydrogen evolution reaction (HER) and the anodic oxygen evolution reaction. However, we propose to introduce a simple and rapid electrochemical surface modification of the steel electrodes with more efficient earth-abundant catalysts in order to enhance the overall water splitting performance. For the HER we deposited a thin film of Ni-MoS2 composite while a NiFe double hydroxide film is deposited on the anode. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy are employed to characterize the electrode surface before and after the electrodeposition with the catalysts. Electrochemical testing is then used to optimize the composition of the catalysts by verifying the catalytic performance of the electrodes. As proof-of-concept, an electrochemical testing is performed with the 3D printed and assembled device.

Original languageEnglish
Pages (from-to)16968-16975
Number of pages8
JournalACS Sustainable Chemistry and Engineering
Issue number12
Publication statusPublished - 2018 Dec 3

Bibliographical note

Funding Information:
This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/0.0/15_003/0000444 financed by the EFRR). A.A. thanks A*Star, Singapore for Grant No. SERC A1783c0005.

Publisher Copyright:
© 2018 American Chemical Society.

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment


Dive into the research topics of 'Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts'. Together they form a unique fingerprint.

Cite this