Abstract
Herringbone carbon nanofibers (HCNFs) are prepared for use as anode materials in lithium-ion batteries (LIBs). HCNFs are prepared using a Ni-Fe catalyst and subsequently multi-functionalized with oxygen using the Hummers' method, and then with both oxygen and nitrogen-containing 2-ureido-4[1H]pyrimidinone (UHP) moieties, which endow the HCNFs with the ability to form quadruple hydrogen bonds (QHBs). The as-prepared HCNFs are, on average, 13 μm in length and 100 nm in diameter, with a highly graphitic structure. The oxidized HCNFs (Ox-HCNFs) obtained by Hummers' method are partially exfoliated, having double-bladed saw-like structures that extend in the direction of the graphite planes. QHBs are formed between the HCNFs after functionalization with the UHP moieties. The final surface-modified HCNFs (N-Ox-HCNFs) have more electrochemical sites, shorter Li+ diffusion lengths, and additional electron pathways compared with the as-prepared HCNF and Ox-HCNF. The introduction of oxygen- and nitrogen-containing functional groups improves the performance of LIBs: a high charge capacity of 763 mA h g-1 at 0.1 A g-1, excellent rate capability (a capacity of 402 mA h g-1 at 3 A g-1), and near 100% capacity retention after 300 cycles are reported.
Original language | English |
---|---|
Pages (from-to) | 18612-18618 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 19 |
Issue number | 28 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Publisher Copyright:© the Owner Societies 2017.
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)
- Physical and Theoretical Chemistry