Abstract
In this letter, a motion adaptive deinterlacing algorithm based on modular neural networks is proposed. The proposed method uses different neural networks based on the amount of motion. Modular neural networks were selectively used depending on the differences between the adjacent fields. We also used motion vectors to select optimal input pixels from the adjacent fields. Motion estimation was used to find input blocks for the neural networks with minimum errors. Intra/inter-mode switching was employed to address inaccurate motion estimation problems.
Original language | English |
---|---|
Article number | 5733392 |
Pages (from-to) | 844-849 |
Number of pages | 6 |
Journal | IEEE Transactions on Circuits and Systems for Video Technology |
Volume | 21 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2011 Jun |
Bibliographical note
Funding Information:Manuscript received August 17, 2009; revised April 16, 2010 and August 27, 2010; accepted October 14, 2010. Date of publication March 17, 2011; date of current version June 3, 2011. This work was supported by the Korea Science and Engineering Foundation (KOSEF), under Grant 2009-0077978, funded by the Korean Government (MEST). This paper was recommended by Associate Editor M. Comer.
All Science Journal Classification (ASJC) codes
- Media Technology
- Electrical and Electronic Engineering