Mortality prediction of patients in intensive care units using machine learning algorithms based on electronic health records

Min Hyuk Choi, Dokyun Kim, Eui Jun Choi, Yeo Jin Jung, Yong Jun Choi, Jae Hwa Cho, Seok Hoon Jeong

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Improving predictive models for intensive care unit (ICU) inpatients requires a new strategy that periodically includes the latest clinical data and can be updated to reflect local characteristics. We extracted data from all adult patients admitted to the ICUs of two university hospitals with different characteristics from 2006 to 2020, and a total of 85,146 patients were included in this study. Machine learning algorithms were trained to predict in-hospital mortality. The predictive performance of conventional scoring models and machine learning algorithms was assessed by the area under the receiver operating characteristic curve (AUROC). The conventional scoring models had various predictive powers, with the SAPS III (AUROC 0.773 [0.766–0.779] for hospital S) and APACHE III (AUROC 0.803 [0.795–0.810] for hospital G) showing the highest AUROC among them. The best performing machine learning models achieved an AUROC of 0.977 (0.973–0.980) in hospital S and 0.955 (0.950–0.961) in hospital G. The use of ML models in conjunction with conventional scoring systems can provide more useful information for predicting the prognosis of critically ill patients. In this study, we suggest that the predictive model can be made more robust by training with the individual data of each hospital.

Original languageEnglish
Article number7180
JournalScientific reports
Volume12
Issue number1
DOIs
Publication statusPublished - 2022 Dec

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Mortality prediction of patients in intensive care units using machine learning algorithms based on electronic health records'. Together they form a unique fingerprint.

Cite this