Abstract
Layered transition-metal dichalcogenides (TMDs) are valued for their electrocatalytic properties toward the hydrogen-evolution reaction (HER) and oxygen-reduction reaction (ORR). One effective strategy to activate the electrocatalytic properties of TMDs is through doping. The optimistic outlook of doped-MoS2 as an electrocatalyst witnessed in previous reports spurred us to examine the effect of doping WSe2 with Group 5 transition-metal species, namely V, Nb, and Ta, in aspects of inherent electroactivities and catalysis. Apart from the mild reduction signal unique to the Group 5 transition-metal dopants, the Group 5 transition-metal-doped WSe2 materials are found to possess largely identical inherent electrochemistry to the undoped WSe2 with a characteristic anodic peak. Living up to expectations, the Group 5 transition-metal-doped WSe2 materials exhibit improved electrocatalytic HER efficiency, as evident by the lower HER overpotentials and Tafel slopes relative to undoped WSe2. After doping with V, Nb, or Ta species, an increased number of active sites is observed given the distinct changes in morphology from thick bulky pieces in undoped WSe2 to thinner fragments in doped WSe2. Although undoped WSe2 exists in the semiconducting 2H phase, the Group 5 transition-metal-doped WSe2 materials are dominated by the metallic 1T phase. Doping WSe2 with V, Nb, or Ta stabilizes the catalytic 1T phase and appears to induce the transition from the 2H to 1T phase. In contrast to the enhanced HER performance of WSe2 upon doping, Group 5 transition-metal dopants proved futile in activating the ORR electrocatalytic behavior of WSe2, for which the ORR efficiency is unchanged. Therefore, these findings facilitate the understanding of the role of Group 5 transition-metal dopants in the electrochemical and catalytic properties of WSe2 relative to their morphological features and provide an evaluation of the efficacy of doping TMDs in electrocatalytic applications.
Original language | English |
---|---|
Pages (from-to) | 3199-3208 |
Number of pages | 10 |
Journal | Chemistry - A European Journal |
Volume | 24 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2018 Mar 2 |
Bibliographical note
Funding Information:M.P. acknowledges funding from Ministry of Education (Singapore) from Tier 1 RGT1/13. Z.S. and J.L. were supported by the Czech Science Foundation (GACR No. 17-11456S) and by specific university research (MSMT No. 20-SVV/2017). This work was created with the financial support of the Neuron Founda- tion for science support. This work was supported by the project Advanced Functional Nanorobots (reg. No. CZ.02.1.01/0.0/ 0.0/15_003/0000444 financed by the EFRR).
Publisher Copyright:
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
All Science Journal Classification (ASJC) codes
- Catalysis
- Organic Chemistry