TY - JOUR
T1 - Monitoring of microbial hazards at farms, slaughterhouses, and processing lines of swine in Korea
AU - Rho, M. J.
AU - Chung, M. S.
AU - Lee, J. H.
AU - Park, J.
PY - 2001
Y1 - 2001
N2 - This study was executed to investigate microbiological hazards at swine farms, slaughterhouses, dressing operations, and local markets for the application of the hazard analysis critical control point system in Korea by analyzing total aerobic plate count (APC) and presence of pathogens. Six integrated pig farms and meat packers were selected from six different provinces, and samples were collected from pig carcasses by swabbing and excision methods at the slaughterhouses, processing rooms, and local markets, respectively. APCs of water in water tanks were relatively low, 1.9 to 3.1 log10 CFU/ml; however, they were increased to 4.6 to 6.9 log10 CFU/ml when sampled from water nipples in the pigpen. APCs of feeds in the feed bins and in the pigpens were 4.4 to 5.4 and 5.2 to 6.7 log10 CFU/g, respectively. Salmonella spp., Staphylococcus aureus, and Clostridium perfringens were detected from water and feed sampled in pigpens and pigpen floors. S. aureus was the most frequently detected pathogenic bacteria in slaughterhouses and processing rooms. Listeria monocytogenes and Yersinia enterocolitica were also detected from the processing rooms of the Kyonggi, Kyongsang, and Cheju provinces. Even though APCs were maintained at the low level of 3.0 log10 CFU/g during slaughtering and processing steps, those of final pork products produced by the same companies showed relatively high numbers when purchased from the local market. These results indicated that the cold chain system for transporting and merchandising of pork products was deficient in Korea. Water supply and feed bins in swine farms and individual operations can be identified as critical control points to reduce microbiological hazards in swine farms, slaughterhouses, and processing plants.
AB - This study was executed to investigate microbiological hazards at swine farms, slaughterhouses, dressing operations, and local markets for the application of the hazard analysis critical control point system in Korea by analyzing total aerobic plate count (APC) and presence of pathogens. Six integrated pig farms and meat packers were selected from six different provinces, and samples were collected from pig carcasses by swabbing and excision methods at the slaughterhouses, processing rooms, and local markets, respectively. APCs of water in water tanks were relatively low, 1.9 to 3.1 log10 CFU/ml; however, they were increased to 4.6 to 6.9 log10 CFU/ml when sampled from water nipples in the pigpen. APCs of feeds in the feed bins and in the pigpens were 4.4 to 5.4 and 5.2 to 6.7 log10 CFU/g, respectively. Salmonella spp., Staphylococcus aureus, and Clostridium perfringens were detected from water and feed sampled in pigpens and pigpen floors. S. aureus was the most frequently detected pathogenic bacteria in slaughterhouses and processing rooms. Listeria monocytogenes and Yersinia enterocolitica were also detected from the processing rooms of the Kyonggi, Kyongsang, and Cheju provinces. Even though APCs were maintained at the low level of 3.0 log10 CFU/g during slaughtering and processing steps, those of final pork products produced by the same companies showed relatively high numbers when purchased from the local market. These results indicated that the cold chain system for transporting and merchandising of pork products was deficient in Korea. Water supply and feed bins in swine farms and individual operations can be identified as critical control points to reduce microbiological hazards in swine farms, slaughterhouses, and processing plants.
UR - http://www.scopus.com/inward/record.url?scp=0034793366&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034793366&partnerID=8YFLogxK
U2 - 10.4315/0362-028X-64.9.1388
DO - 10.4315/0362-028X-64.9.1388
M3 - Article
C2 - 11563516
AN - SCOPUS:0034793366
SN - 0362-028X
VL - 64
SP - 1388
EP - 1391
JO - Journal of Food Protection
JF - Journal of Food Protection
IS - 9
ER -