Abstract
The ionosphere has been the most challenging source of error to mitigate within the community of global navigation satellite system (GNSS)-based safety-critical systems. Users of those systems should be assured that the difference between an unknown true position and a system-derived position estimate is bounded with an extremely high degree of confidence. One of the major concerns for meeting this requirement, known as integrity, is ionosphere-induced error or discontinuity of GNSS signals significant enough to threaten the safety of users. The potentially hazardous ionospheric anomalies of interest in this article are ionospheric spatial decorrelation and ionospheric scintillation under disturbed conditions. As the demand of safety-critical navigation applications increases with the rapid growth of the autonomous vehicle sector, ionospheric monitoring and mitigation techniques become more important to support such systems.
Original language | English |
---|---|
Article number | 8026593 |
Pages (from-to) | 96-110 |
Number of pages | 15 |
Journal | IEEE Signal Processing Magazine |
Volume | 34 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2017 Sept |
Bibliographical note
Publisher Copyright:© 2017 IEEE.
All Science Journal Classification (ASJC) codes
- Signal Processing
- Electrical and Electronic Engineering
- Applied Mathematics