Abstract
We investigated the causal relationship between genotype and phenotype of drug-resistant Mycobacterium tuberculosis isolates obtained from patients with pulmonary tuberculosis (TB) in Korea. Of 80 isolates tested, 17, 20, 1, and 7 isolates were mono-resistant to ethambutol (EMB), isoniazid (INH), pyrazinamide (PZA), and rifampicin (RFP), respectively, and 31 isolates (38.8%) were multidrug-resistant (MDR). Sequencing analysis showed that 78% (32/41) of RFP-resistant strains had mutations in the rifampicin resistance-determining region (RRDR) of rpoB, and the mutation at rpoB531 (59.4%) was most abundant. In 52 INH-resistant strains, mutations were found mostly at C-15T (n = 21, 40.4%) in the inhA promoter region as well as at katG315 (n = 12, 23.1%). Mutations at embB306 were mostly found in 26.7% (12/45) of EMB-resistant isolates. New mutations found here in MDR isolates include rpoB523 (Gly523Glu) and embB319 (Tyr319Ser). Consequently, mutations in the rpoB531, C-15T in the inhA promoter region, embB306, and katG315 would be a useful marker for rapid detection of MDR M. tuberculosis isolates in Korea.
Original language | English |
---|---|
Pages (from-to) | 52-61 |
Number of pages | 10 |
Journal | Diagnostic Microbiology and Infectious Disease |
Volume | 72 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2012 Jan |
Bibliographical note
Funding Information:This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant no. R01-2008-000-12139-0 ).
All Science Journal Classification (ASJC) codes
- Microbiology (medical)
- Infectious Diseases